
APPENDIX A: DESCRIPTIONS OF COMPUTER
SCIENCE (CS) PRACTICES
There are seven (7) CS Practices that are to be embedded in curriculum and
instruction as the standards and benchmarks are taught and measured.

Practice 1. Fostering an Inclusive Computing Culture
Practice 2. Collaborating Around Computing
Practice 3. Recognizing and Defining Computational Problems
Practice 4. Developing and Using Abstractions
Practice 5. Creating Computational Artifacts
Practice 6. Testing and Refining Computational Artifacts
Practice 7. Communicating About Computing

CS Practice 1. Fostering an Inclusive Computing Culture
Overview: Building an inclusive and diverse computing culture
requires strategies for incorporating perspectives from people of
different genders, ethnicities, and abilities. Incorporating these
perspectives involves understanding the personal, ethical, social,
economic, and cultural contexts in which people operate. Considering
the needs of diverse users during the design process is essential to
producing inclusive computational products.
By the end of Grade 12, students should be able to:
1.1 Include the unique perspectives of others and reflect on one’s

own perspectives when designing and developing computational
products.

At all grade levels, students should recognize that the choices people
make when they create artifacts are based on personal interests,
experiences, and needs. Young learners should begin to differentiate
their technology preferences from the technology preferences of
others. Initially, students should be presented with perspectives from
people with different backgrounds, ability levels, and points of view.
As students progress, they should independently seek diverse
perspectives throughout the design process for the purpose of
improving their computational artifacts. Students who are well-versed

in fostering an inclusive computing culture should be able to
differentiate backgrounds and skill sets and know when to call upon
others, such as to seek out knowledge about potential end users or
intentionally seek input from people with diverse backgrounds.
1.2 Address the needs of diverse end users during the design

process to produce artifacts with broad accessibility and usability.

At any level, students should recognize that users of technology have
different needs and preferences and that not everyone chooses to
use, or is able to use, the same technology products. For example,
young learners, with teacher guidance, might compare a touchpad
and a mouse to examine differences in usability. As students
progress, they should consider the preferences of people who might
use their products. Students should be able to evaluate the
accessibility of a product to a broad group of end users, such as
people with various disabilities. For example, they may notice that
allowing an end user to change font sizes and colors will make an
interface usable for people with low vision. At the higher grades,
students should become aware of professionally accepted
accessibility standards and should be able to evaluate computational
artifacts for accessibility. Students should also begin to identify
potential bias during the design process to maximize accessibility in
product design. For example, they can test an app and recommend to
its designers that it respond to verbal commands to accommodate
users who are blind or have physical disabilities.
1.3 Employ self- and peer-advocacy to address bias in interactions,

product design, and development methods.
After students have experience identifying diverse perspectives and
including unique perspectives (P1.1), they should begin to employ
self-advocacy strategies, such as speaking for themselves if their
needs are not met. As students progress, they should advocate for
their peers when accommodations, such as an assistive-technology
peripheral device, are needed for someone to use a computational
artifact. Eventually, students should regularly advocate for both
themselves and others.

Page 1 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

CS Practice 2. Collaborating Around Computing
Overview: Collaborative computing is the process of performing a
computational task by working in pairs and on teams. Because it
involves asking for the contributions and feedback of others, effective
collaboration can lead to better outcomes than working independently.
Collaboration requires individuals to navigate and incorporate diverse
perspectives, conflicting ideas, disparate skills, and distinct
personalities. Students should use collaborative tools to effectively
work together and to create complex artifacts.

By the end of Grade 12, students should be able to:
2.1 Cultivate working relationships with individuals possessing

diverse perspectives, skills, and personalities.

At any grade level, students should work collaboratively with others.
Early on, they should learn strategies for working with team members
who possess varying individual strengths. For example, with teacher
support, students should begin to give each team member
opportunities to contribute and to work with each other as co-learners.
Eventually, students should become more sophisticated at applying
strategies for mutual encouragement and support. They should
express their ideas with logical reasoning and find ways to reconcile
differences cooperatively. For example, when they disagree, they
should ask others to explain their reasoning and work together to
make respectful, mutual decisions. As they progress, students should
use methods for giving all group members a chance to participate.
Older students should strive to improve team efficiency and
effectiveness by regularly evaluating group dynamics. They should
use multiple strategies to make team dynamics more productive. For
example, they can ask for the opinions of quieter team members,
minimize interruptions by more talkative members, and give
individuals credit for their ideas and their work.

2.2 Create team norms, expectations, and equitable workloads to
increase efficiency and effectiveness.

After students have had experience cultivating working relationships
within teams (P2.1), they should gain experience working in particular

team roles. Early on, teachers may help guide this process by
providing collaborative structures. For example, students may take
turns in different roles on the project, such as note taker, facilitator, or
“driver” of the computer. As students progress, they should become
less dependent on the teacher assigning roles and become more
adept at assigning roles within their teams. For example, they should
decide together how to take turns in different roles. Eventually,
students should independently organize their own teams and create
common goals, expectations, and equitable workloads. They should
also manage project workflow using agendas and timelines and
should evaluate workflow to identify areas for improvement.

2.3 Solicit and incorporate feedback from, and provide constructive
feedback to, team members and other stakeholders.

At any level, students should ask questions of others and listen to
their opinions. Early on, with teacher scaffolding, students should
seek help and share ideas to achieve a particular purpose. As they
progress in school, students should provide and receive feedback
related to computing in constructive ways. For example, pair
programming is a collaborative process that promotes giving and
receiving feedback. Older students should engage in active listening
by using questioning skills and should respond empathetically to
others. As they progress, students should be able to receive feedback
from multiple peers and should be able to differentiate opinions.
Eventually, students should seek contributors from various
environments. These contributors may include end users, experts, or
general audiences from online forums.

2.4 Evaluate and select technological tools that can be used to
collaborate on a project.

At any level, students should be able to use tools and methods for
collaboration on a project. For example, in the early grades, students
could collaboratively brainstorm by writing on a white-board. As
students progress, they should use technological collaboration tools to
manage team-work, such as knowledge-sharing tools and online
project spaces. They should also begin to make decisions about
which tools would be best to use and when to use them. Eventually,

Page 2 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

students should use different collaborative tools and methods to solicit
input from not only team members and classmates but also others,
such as participants in online forums or local communities.

CS Practice 3. Recognizing and Defining Computational
Problems
Overview: The ability to recognize appropriate and worthwhile
opportunities to apply computation is a skill that develops over time
and is central to computing. Solving a problem with a computational
approach requires defining the problem, breaking it down into parts,
and evaluating each part to determine whether a computational
solution is appropriate.

By the end of Grade 12, students should be able to:
3.1 Identify complex, interdisciplinary, real-world problems that can

be solved computationally.

At any level, students should be able to identify problems that have
been solved computationally. For example, young students can
discuss a technology that has changed the world, such as email or
mobile phones. As they progress, they should ask clarifying questions
to understand whether a problem or part of a problem can be solved
using a computational approach. For example, identify real-world
problems that span multiple disciplines, such as increasing bike safety
with new helmet technology, and can be solved computationally.

3.2 Decompose complex real-world problems into manageable sub-
problems that could integrate existing solutions or procedures.

At any grade level, students should be able to break problems down
into their component parts. In the early grade levels, students should
focus on breaking down simple problems. For example, in a visual
programming environment, students could break down (or
decompose) the steps needed to draw a shape. As students progress,
they should decompose larger problems into manageable smaller
problems. For example, young students may think of an animation as
multiple scenes and thus create each scene independently. Students
can also break down a program into subgoals: getting input from the
user, processing the data, and displaying the result to the user.

Eventually, as students encounter complex real-world problems that
span multiple disciplines or social systems, they should decompose
complex problems into manageable subproblems that could
potentially be solved with programs or procedures that already exist.
For example, students could create an app to solve a community
problem that connects to an online database through an application
programming interface (API).

3.3 Evaluate whether it is appropriate and feasible to solve a problem
computationally.

After students have had some experience breaking problems down
(P3.2) and identifying subproblems that can be solved computationally
(P3.1), they should begin to evaluate whether a computational
solution is the most appropriate solution for a particular problem. For
example, students might question whether using a computer to
determine whether someone is telling the truth would be
advantageous. As students progress, they should systematically
evaluate the feasibility of using computational tools to solve given
problems or subproblems, such as through a cost-benefit analysis.
Eventually, students should include more factors in their evaluations,
such as how efficiency affects feasibility or whether a proposed
approach raises ethical concerns.

CS Practice 4. Developing and Using Abstractions
Overview: Abstractions are formed by identifying patterns and
extracting common features from specific examples to create
generalizations. Using generalized solutions and parts of solutions
designed for broad reuse simplifies the development process by
managing complexity.

By the end of Grade 12, students should be able to:
4.1 Extract common features from a set of interrelated processes or

complex phenomena.

Students at all grade levels should be able to recognize patterns.
Young learners should be able to identify and describe repeated
sequences in data or code through analogy to visual patterns or
physical sequences of objects. As they progress, students should

Page 3 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

identify patterns as opportunities for abstraction, such as recognizing
repeated patterns of code that could be more efficiently implemented
as a loop. Eventually, students should extract common features from
more complex phenomena or processes. For example, students
should be able to identify common features in multiple segments of
code and substitute a single segment that uses variables to account
for the differences. In a procedure, the variables would take the form
of parameters. When working with data, students should be able to
identify important aspects and find patterns in related data sets such
as crop output, fertilization methods, and climate conditions.

4.2 Evaluate existing technological functionalities and incorporate
them into new designs.

At all levels, students should be able to use well-defined abstractions
that hide complexity. Just as a car hides operating details, such as the
mechanics of the engine, a computer program’s “move” command
relies on hidden details that cause an object to change location on the
screen. As they progress, students should incorporate predefined
functions into their designs, understanding that they do not need to
know the underlying implementation details of the abstractions that
they use. Eventually, students should understand the advantages of,
and be comfortable using, existing functionalities (abstractions)
including technological resources created by other people, such as
libraries and application programming interfaces (APIs). Students
should be able to evaluate existing abstractions to determine which
should be incorporated into designs and how they should be
incorporated. For example, students could build powerful apps by
incorporating existing services, such as online databases that return
geolocation coordinates of street names or food nutrition information.

4.3 Create modules and develop points of interaction that can apply
to multiple situations and reduce complexity.

After students have had some experience identifying patterns (P4.1),
decomposing problems (P3.2), using abstractions (P4.2), and taking
advantage of existing resources (P4.2), they should begin to develop
their own abstractions. As they progress, students should take
advantage of opportunities to develop generalizable modules. For

example, students could write more efficient programs by designing
procedures that are used multiple times in the program. These
procedures can be generalized by defining parameters that create
different outputs for a wide range of inputs. Later on, students should
be able to design systems of interacting modules, each with a well-
defined role, that coordinate to accomplish a common goal. Within an
object-oriented programming context, module design may include
defining interactions among objects. At this stage, these modules,
which combine both data and procedures, can be designed and
documented for reuse in other programs. Additionally, students can
design points of interaction, such as a simple user interface, either
text or graphical, that reduces the complexity of a solution and hides
lower-level implementation details.

4.4 Model phenomena and processes and simulate systems to
understand and evaluate potential outcomes.

Students at all grade levels should be able to represent patterns,
processes, or phenomena. With guidance, young students can draw
pictures to describe a simple pattern, such as sunrise and sunset, or
show the stages in a process, such as brushing your teeth. They can
also create an animation to model a phenomenon, such as
evaporation. As they progress, students should understand that
computers can model real-world phenomena, and they should use
existing computer simulations to learn about real-world systems. For
example, they may use a preprogrammed model to explore how
parameters affect a system, such as how rapidly a disease spreads.
Older students should model phenomena as systems, with rules
governing the interactions within the system. Students should analyze
and evaluate these models against real-world observations. For
example, students might create a simple producer–consumer
ecosystem model using a programming tool. Eventually, they could
progress to creating more complex and realistic interactions between
species, such as predation, competition, or symbiosis, and evaluate
the model based on data gathered from nature.

CS Practice 5. Creating Computational Artifacts
Overview: The process of developing computational artifacts

Page 4 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

embraces both creative expression and the exploration of ideas to
create prototypes and solve computational problems. Students create
artifacts that are personally relevant or beneficial to their community
and beyond. Computational artifacts can be created by combining and
modifying existing artifacts or by developing new artifacts. Examples
of computational artifacts include programs, simulations,
visualizations, digital animations, robotic systems, and apps.
By the end of Grade 12, students should be able to:
5.1 Plan the development of a computational artifact using an

iterative process that includes reflection on and modification of
the plan, taking into account key features, time and resource
constraints, and user expectations.

At any grade level, students should participate in project planning and
the creation of brainstorming documents. The youngest students may
do so with the help of teachers. With scaffolding, students should gain
greater independence and sophistication in the planning, design, and
evaluation of artifacts. As learning progresses, students should
systematically plan the development of a program or artifact and
intentionally apply computational techniques, such as decomposition
and abstraction, along with knowledge about existing approaches to
artifact design. Students should be capable of reflecting on and, if
necessary, modifying the plan to accommodate end goals.

5.2 Create a computational artifact for practical intent, personal
expression, or to address a societal issue.

Students at all grade levels should develop artifacts in response to a
task or a computational problem. At the earliest grade levels, students
should be able to choose from a set of given commands to create
simple animated stories or solve pre-existing problems. Younger
students should focus on artifacts of personal importance. As they
progress, student expressions should become more complex and of
increasingly broader significance. Eventually, students should engage
in independent, systematic use of design processes to create artifacts
that solve problems with social significance by seeking input from
broad audiences.

5.3 Modify an existing artifact to improve or customize it.

At all grade levels, students should be able to examine existing
artifacts to understand what they do. As they progress, students
should attempt to use existing solutions to accomplish a desired goal.
For example, students could attach a programmable light sensor to a
physical artifact they have created to make it respond to light. Later
on, they should modify or remix parts of existing programs to develop
something new or to add more advanced features and complexity. For
example, students could modify prewritten code from a single-player
game to create a two-player game with slightly different rules.

CS Practice 6. Testing and Refining Computational Artifacts
Overview: Testing and refinement is the deliberate and iterative
process of improving a computational artifact. This process includes
debugging (identifying and fixing errors) and comparing actual
outcomes to intended outcomes. Students also respond to changing
needs and expectations of end users and improve the performance,
reliability, usability, and accessibility of artifacts.
By the end of Grade 12, students should be able to:
6.1 Systematically test computational artifacts by considering all

scenarios and using test cases.

At any grade level, students should be able to compare results to
intended outcomes. Young students should verify whether given
criteria and constraints have been met. As students progress, they
should test computational artifacts by considering potential errors,
such as what will happen if a user enters invalid input. Eventually,
testing should become a deliberate process that is more iterative,
systematic, and proactive. Older students should be able to anticipate
errors and use that knowledge to drive development. For example,
students can test their program with inputs associated with all
potential scenarios.

6.2 Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in
programs (debugging) and use strategies to solve problems with

Page 5 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

computing systems (troubleshooting). Young students could use trial
and error to fix simple errors. For example, a student may try
reordering the sequence of commands in a program. In a hardware
context, students could try to fix a device by resetting it or checking
whether it is connected to a network. As students progress, they
should become more adept at debugging programs and begin to
consider logic errors: cases in which a program works, but not as
desired. In this way, students will examine and correct their own
thinking. For example, they might step through their program, line by
line, to identify a loop that does not terminate as expected. Eventually,
older students should progress to using more complex strategies for
identifying and fixing errors, such as printing the value of a counter
variable while a loop is running to determine how many times the loop
runs.

6.3 Evaluate and refine a computational artifact multiple times to
enhance its performance, reliability, usability, and accessibility.

After students have gained experience testing (P6.2), debugging, and
revising (P6.1), they should begin to evaluate and refine their
computational artifacts. As students progress, the process of
evaluation and refinement should focus on improving performance
and reliability. For example, students could observe a robot in a
variety of lighting conditions to determine that a light sensor should be
less sensitive. Later on, evaluation and refinement should become an
iterative process that also encompasses making artifacts more usable
and accessible (P1.2). For example, students can incorporate
feedback from a variety of end users to help guide the size and
placement of menus and buttons in a user interface.

CS Practice 7. Communicating About Computing
Overview: Communication involves personal expression and
exchanging ideas with others. In computer science, students
communicate with diverse audiences about the use and effects of
computation and the appropriateness of computational choices.
Students write clear comments, document their work, and
communicate their ideas through multiple forms of media. Clear
communication includes using precise language and carefully

considering possible audiences.

By the end of Grade 12, students should be able to:
7.1 Select, organize, and interpret large data sets from multiple

sources to support a claim.

At any grade level, students should be able to refer to data when
communicating an idea. Early on, students should, with guidance,
present basic data through the use of visual representations, such as
storyboards, flowcharts, and graphs. As students progress, they
should work with larger data sets and organize the data in those
larger sets to make interpreting and communicating it to others easier,
such as through the creation of basic data representations.
Eventually, students should be able to select relevant data from large
or complex data sets in support of a claim or to communicate the
information in a more sophisticated manner.

7.2 Describe, justify, and document computational processes and
solutions using appropriate terminology consistent with the
intended audience and purpose.

At any grade level, students should be able to talk about choices they
make while designing a computational artifact. Early on, they should
use language that articulates what they are doing and identifies
devices and concepts they are using with correct terminology (e.g.,
program, input, and debug). Younger students should identify the
goals and expected outcomes of their solutions. Along the way,
students should provide documentation for end users that explains
their artifacts and how they function, and they should both give and
receive feedback. For example, students could provide a project
overview and ask for input from users. As students progress, they
should incorporate clear comments in their product and document
their process using text, graphics, presentations, and demonstrations.

7.3 Articulate ideas responsibly by observing intellectual property
rights and giving appropriate attribution.

All students should be able to explain the concepts of ownership and
sharing. Early on, students should apply these concepts to
computational ideas and creations. They should identify instances of

Page 6 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

remixing, when ideas are borrowed and iterated upon, and give
proper attribution. They should also recognize the contributions of
collaborators. Eventually, students should consider common licenses
that place limitations or restrictions on the use of computational
artifacts. For example, a downloaded image may have restrictions that
prohibit modification of an image or using it for commercial purposes.

Computer Science Teachers Association (CSTA), (2017). Retrieved from
http://www.csteachers.org/page/standards.

Page 7 2019 Wyoming Computer Science Standards edu.wyoming.gov/standards

